Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 254: 119129, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331868

RESUMO

OBJECTIVES: Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) recordings in humans, whereby EEG is recorded from electrodes implanted inside the cranium during fMRI scanning, were made possible following safety studies on test phantoms and our specification of a rigorous data acquisition protocol. In parallel with this work, other investigations in our laboratory revealed the damage caused by the EEG electrode implantation procedure at the cellular level. The purpose of this report is to further explore the safety of performing MRI, including simultaneous icEEG-fMRI data acquisitions, in the presence of implanted intra-cranial EEG electrodes, by presenting some histopathological and heat-shock immunopositive labeling observations in surgical tissue samples from patients who underwent the scanning procedure. METHODS: We performed histopathology and heat shock protein expression analyses on surgical tissue samples from nine patients who had been implanted with icEEG electrodes. Three patients underwent icEEG-fMRI and structural MRI (sMRI); three underwent sMRI only, all at similar time points after icEEG implantation; and three who did not undergo functional or sMRI with icEEG electrodes. RESULTS: The histopathological findings from the three patients who underwent icEEG-fMRI were similar to those who did not, in that they showed no evidence of additional damage in the vicinity of the electrodes, compared to cases who had no MRI with implanted icEEG electrodes. This finding was similar to our observations in patients who only underwent sMRI with implanted icEEG electrodes. CONCLUSION: This work provides unique evidence on the safety of functional MRI in the presence of implanted EEG electrodes. In the cases studied, icEEG-fMRI performed in accordance with our protocol based on low-SAR (≤0.1 W/kg) sequences at 1.5T using a head-transmit RF coil, did not result in measurable additional damage to the brain tissue in the vicinity of implanted electrodes. Furthermore, while one cannot generalize the results of this study beyond the specific electrode implantation and scanning conditions described herein, we submit that our approach is a useful framework for the post-hoc safety assessment of MR scanning with brain implants.


Assuntos
Eletrocorticografia , Eletroencefalografia , Eletrodos Implantados/efeitos adversos , Eletroencefalografia/métodos , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio
2.
Epilepsy Res ; 169: 106529, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33370704

RESUMO

PURPOSE: Focal Cortical Dysplasias (FCD) are localized malformative brain lesions in epilepsy. FCD3a associated with hippocampal sclerosis, affects the superficial cortex and is presumed to have an 'acquired' rather than developmental origin. Precursor cells may arise outside neurogenic zones including cortical layer I. Our aim was to characterise subsets of glial progenitor cells in the superficial cortical layers, known to be involved in gliosis and gliogenesis and that could distinguish FCD3a from other subtypes. METHODS: Using immunohistochemistry we quantified the density of glial progenitor subsets in superficial cortex layers using markers against PAX6, GFAP, Olig2 and PDGFRß and proliferation marker MCM2 in ten FCD3a cases compared to 18 other FCD types and 11 non-FCD controls. KEY FINDINGS: Glial progenitor cells types were present in the cortical layer I and II in all FCD groups. GFAP cells frequently expressed PAX6 and significantly higher GFAP/PAX6 than GFAP/MCM2 cell densities were identified in the FCD3a group (p < 0.05). Olig2 cell densities were significantly higher in FCD3b than FCD3a (p = 0.002) and significantly higher GFAP/MCM2 compared to PDGFRß/MCM2 cell densities were identified in both FCD3b and FCD2 groups. There was no correlation between cell densities and the age of patients at surgery and between cortical regions. SIGNIFICANCE: Immature and proliferative glial populations across FCD variants reflect reactive cell types and differences may provide insight into underlying pathomechanisms. Higher PAX6 expression in astroglial cells in FCD3a may indicate a switch to astrocytic maturation and enhanced superficial gliosis. Higher Olig2 and GFAP/MCM2 densities in FCD3b may reflect margins of the tumour infiltration zone rather than true cortical dysplasia.


Assuntos
Malformações do Desenvolvimento Cortical , Astrócitos , Córtex Cerebral , Epilepsia , Gliose , Humanos , Neuroglia
3.
Front Cell Neurosci ; 14: 53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256318

RESUMO

Granule cell dispersion (GCD) is a common pathological feature observed in the hippocampus of patients with Mesial Temporal Lobe Epilepsy (MTLE). Pathomechanisms underlying GCD remain to be elucidated, but one hypothesis proposes aberrant reactivation of neurodevelopmental migratory pathways, possibly triggered by febrile seizures. This study aims to compare the proteomes of basal and dispersed granule cells in the hippocampus of eight MTLE patients with GCD to identify proteins that may mediate GCD in MTLE. Quantitative proteomics identified 1,882 proteins, of which 29% were found in basal granule cells only, 17% in dispersed only and 54% in both samples. Bioinformatics analyses revealed upregulated proteins in dispersed samples were involved in developmental cellular migratory processes, including cytoskeletal remodeling, axon guidance and signaling by Ras homologous (Rho) family of GTPases (P < 0.01). The expression of two Rho GTPases, RhoA and Rac1, was subsequently explored in immunohistochemical and in situ hybridization studies involving eighteen MTLE cases with or without GCD, and three normal post mortem cases. In cases with GCD, most dispersed granule cells in the outer-granular and molecular layers have an elongated soma and bipolar processes, with intense RhoA immunolabeling at opposite poles of the cell soma, while most granule cells in the basal granule cell layer were devoid of RhoA. A higher percentage of cells expressing RhoA was observed in cases with GCD than without GCD (P < 0.004). In GCD cases, the percentage of cells expressing RhoA was significantly higher in the inner molecular layer than the granule cell layer (P < 0.026), supporting proteomic findings. In situ hybridization studies using probes against RHOA and RAC1 mRNAs revealed fine peri- and nuclear puncta in granule cells of all cases. The density of cells expressing RHOA mRNAs was significantly higher in the inner molecular layer of cases with GCD than without GCD (P = 0.05). In summary, our study has found limited evidence for ongoing adult neurogenesis in the hippocampus of patients with MTLE, but evidence of differential dysmaturation between dispersed and basal granule cells has been demonstrated, and elevated expression of Rho GTPases in dispersed granule cells may contribute to the pathomechanisms underpinning GCD in MTLE.

4.
Acta Neuropathol Commun ; 6(1): 60, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005693

RESUMO

Doublecortin (DCX) is widely regarded as a marker of immature and migrating neurons during development. While DCX expression persists in adults, particularly in the temporal lobe and neurogenic regions, it is unknown how seizures influence its expression. The aim of the present study was to explore the distribution and characteristics of DCX-expressing cells in surgical and postmortem samples from 40 adult and paediatric patients, with epilepsy and with or without hippocampal sclerosis (HS), compared to post mortem controls. The hippocampus (pes and body), parahippocampal gyrus, amygdala, temporal pole and temporal cortex were examined with DCX immunohistochemistry using four commercially-available DCX antibodies, labelled cells were quantified in different regions of interest as well as their co-expression with cell type specific markers (CD68, Iba1, GFAP, GFAP∂, nestin, SOX2, CD34, OLIG2, PDGFRß, NeuN) and cell cycle marker (MCM2). Histological findings were compared with clinical data, as well as gene expression data obtained from the temporal cortex of 83 temporal lobe epilepsy cases with HS. DCX immunohistochemistry identified immature (Nestin-/NeuN-) neurons in layer II of the temporal neocortex in patients with and without epilepsy. Their number declined significantly with age but was not associated with the presence of hippocampal sclerosis, seizure semiology or memory dysfunction. DCX+ cells were prominent in the paralaminar nuclei and periamygdalar cortex and these declined with age but were not significantly associated with epilepsy history. DCX expressing cells with ramified processes were prominent in all regions, particularly in the hippocampal subgranular zone, where significantly increased numbers were observed in epilepsy samples compared to controls. DCX ramified cells co-expressed Iba1, CD68 and PDGFRß, and less frequently MCM2, OLIG2 and SOX2, but no co-localization was observed with CD34, nestin or GFAP/GFAP ∂. Gene expression data from neocortical samples in patients with TLE and HS supported ongoing DCX expression in adults. We conclude that DCX identifies a range of morphological cell types in temporal lobe epilepsy, including immature populations, glial and microglial cell types. Their clinical relevance and biological function requires further study but we show some evidence for alteration with age and in epilepsy.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Epilepsia do Lobo Temporal/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD/metabolismo , Proteínas de Ligação ao Cálcio , Criança , Proteínas de Ligação a DNA/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/classificação , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/genética , RNA Mensageiro/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Adulto Jovem
5.
Ann Neurol ; 80(6): 882-895, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27766665

RESUMO

OBJECTIVE: This study reports on a novel brain pathology in young patients with frontal lobe epilepsy (FLE) that is distinct from focal cortical dysplasia (FCD). METHODS: Surgical specimens from 20 young adults with FLE (mean age, 30 years) were investigated with histological/immunohistochemical markers for cortical laminar architecture, mammalian target of (mTOR) pathway activation and inhibition, cellular autophagy, and synaptic vesicle-mediated trafficking as well as proteomics analysis. Findings were correlated with pre-/postoperative clinical, imaging, and electrophysiological data. RESULTS: Excessive lipofuscin accumulation was observed in abnormal dysmorphic neurones in 6 cases, but not in seven FCD type IIB and 7 pathology-negative cases, despite similar age and seizure histories. Abnormal dysmorphic neurones on proteomics analysis were comparable to aged human brains. The mTOR pathway was activated, as in cases with dysplasia, but the immunoreactivities of nucleoporin p62, DEP-domain containing protein 5, clathrin, and dynamin-1 were different between groups, suggesting that enhanced autophagy flux and abnormal synaptic vesicle trafficking contribute to early lipofuscin aggregation in these cases, compared to suppression of autophagy in cases with typical dysplasia. Cases with abnormal neuronal lipofuscin showed subtle magnetic resonance imaging cortical abnormalities that localized with seizure onset zone and were more likely to have a family history. INTERPRETATION: We propose that excess neuronal lipofuscin accumulation in young patients with FLE represents a novel pathology underlying this epilepsy; the early accumulation of lipofuscin may be disease driven, secondary to as-yet unidentified drivers accelerating autophagic pathways, which may underpin the neuronal dysfunction in this condition. Ann Neurol 2016;80:882-895.


Assuntos
Encéfalo/metabolismo , Epilepsia do Lobo Frontal/metabolismo , Lipofuscina/metabolismo , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteômica , Serina-Treonina Quinases TOR/metabolismo
6.
Brain ; 139(Pt 9): 2441-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27497924

RESUMO

SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and co-localization with mossy fibre sprouting, a feature of temporal lobe epilepsy. We demonstrated that the more extensive the tau pathology, the greater the decline in verbal learning (Spearman correlation, r = -0.63), recall (r = -0.44) and graded naming test scores (r = -0.50) over 1-year post-temporal lobe resection (P < 0.05). This relationship with tau burden was also present when examining decline in verbal learning from 3 months to 1 year post-resection (r = -0.54). We found an association between modified tau score and history of secondary generalized seizures (likelihood-ratio χ(2), P < 0.05) however there was no clear relationship between tau pathology and other clinical risk factors assessed. Our findings suggest an epilepsy-related tauopathy in temporal lobe epilepsy, which contributes to accelerated cognitive decline and has diagnostic and treatment implications.


Assuntos
Disfunção Cognitiva/fisiopatologia , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Idoso , Disfunção Cognitiva/etiologia , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tauopatias/etiologia
7.
Acta Neuropathol Commun ; 2: 72, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24927775

RESUMO

INTRODUCTION: In epilepsy, the diagnosis of mild Malformation of Cortical Development type II (mMCD II) predominantly relies on the histopathological assessment of heterotopic neurons in the white matter. The exact diagnostic criteria for mMCD II are still ill-defined, mainly because findings from previous studies were contradictory due to small sample size, and the use of different stains and quantitative systems. Advance in technology leading to the development of whole slide imaging with high-throughput, automated quantitative analysis (WSA) may overcome these differences, and may provide objective, rapid, and reliable quantitation of white matter neurons in epilepsy. This study quantified the density of NeuN immunopositive neurons in the white matter of up to 142 epilepsy and control cases using WSA. Quantitative data from WSA was compared to two other systems, semi-automated quantitation, and the widely accepted method of stereology, to assess the reliability and quality of results from WSA. RESULTS: All quantitative systems showed a higher density of white matter neurons in epilepsy cases compared to controls (P = 0.002). We found that, in particular, WSA with user-defined region of interest (manual) was superior in terms of larger sampled size, ease of use, time consumption, and accuracy in region selection and cell recognition compared to other methods. Using results from WSA manual, we proposed a threshold value for the classification of mMCD II, where 78% of patients now classified with mMCD II were seizure-free at the second post-operatively follow up. CONCLUSION: This study confirms the potential role of WSA in future quantitative diagnostic histology, especially for the histopathological diagnosis of mMCD.


Assuntos
Processamento Eletrônico de Dados , Epilepsia/complicações , Malformações do Desenvolvimento Cortical/etiologia , Malformações do Desenvolvimento Cortical/patologia , Neurônios/patologia , Substância Branca/patologia , Adulto , Contagem de Células , Epilepsia/patologia , Feminino , Humanos , Masculino , Fosfopiruvato Hidratase/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
8.
Eur J Neurosci ; 39(12): 2151-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24666402

RESUMO

Key questions remain regarding the processes governing gliogenesis following central nervous system injury that are critical to understanding both beneficial brain repair mechanisms and any long-term detrimental effects, including increased risk of seizures. We have used cortical injury produced by intracranial electrodes (ICEs) to study the time-course and localization of gliosis and gliogenesis in surgically resected human brain tissue. Seventeen cases with ICE injuries of 4-301 days age were selected. Double-labelled immunolabelling using a proliferative cell marker (MCM2), markers of fate-specific transcriptional factors (PAX6, SOX2), a microglial marker (IBA1) and glial markers (nestin, GFAP) was quantified in three regions: zone 1 (immediate vicinity: 0-350 µm), zone 2 (350-700 µm) and zone 3 (remote ≥2000 µm) in relation to the ICE injury site. Microglial/macrophage cell densities peaked at 28-30 days post-injury (dpi) with a significant decline in proliferating microglia with dpi in all zones. Nestin-expressing cells (NECs) were concentrated in zones 1 and 2, showed the highest regenerative capacity (MCM2 and PAX6 co-expression) and were intimately associated with capillaries within the organizing injury cavity. There was a significant decline in nestin/MCM2 co-expressing cells with dpi in zones 1 and 2. Nestin-positive fibres remained in the chronic scar, and NECs with neuronal morphology were noted in older injuries. GFAP-expressing glia were more evenly distributed between zones, with no significant decline in density or proliferative capacity with dpi. Colocalization between nestin and GFAP in zone 1 glial cells decreased with increasing dpi. In conclusion, NECs at acute injury sites are a proliferative, transient cell population with capacity for maturation into astrocytes with possible neuronal differentiation observed in older injuries.


Assuntos
Encéfalo/fisiopatologia , Eletrodos Implantados/efeitos adversos , Epilepsia/fisiopatologia , Gliose/etiologia , Gliose/fisiopatologia , Adolescente , Adulto , Encéfalo/patologia , Encéfalo/cirurgia , Proteínas de Ligação ao Cálcio , Cicatriz/etiologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Epilepsia/patologia , Epilepsia/cirurgia , Proteínas do Olho/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Proteínas de Homeodomínio/metabolismo , Humanos , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Proteínas dos Microfilamentos , Microglia/patologia , Microglia/fisiologia , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Nestina/metabolismo , Monitorização Neurofisiológica/efeitos adversos , Monitorização Neurofisiológica/instrumentação , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Tempo , Adulto Jovem
9.
Brain ; 135(Pt 10): 3115-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750659

RESUMO

Blood-brain barrier dysfunction is implicated in various neurological conditions. Modulating the blood-brain barrier may have therapeutic value. Progress is hindered by our limited understanding of the pathophysiology of the blood-brain barrier in humans, partly due to restricted availability of human tissue, and because human tissue can only provide limited data about temporal patterns of change. We addressed these important challenges by examining surgically resected brain tissue with various lengths of interval between intracranial depth electrode-related injury and resection, and post-mortem whole brain from patients with drug-sensitive or drug-resistant chronic epilepsy and controls. In this valuable set of resources, we found that: (i) there is a highly localized overexpression of P-glycoprotein in the epileptogenic hippocampus of patients with drug-resistant epilepsy; (ii) this overexpression appears specific to P-glycoprotein and does not affect other transporters; (iii) P-glycoprotein is expressed on the vascular endothelium and end-feet of vascular glia (forming a 'double cuff') in drug-resistant epileptic cases but not in post-mortem controls or surgical epilepsy tissue with electrode-related injuries; (iv) an acute insult from intracranial electrode recording causes localized inflammation, increased blood-brain barrier permeability and structural changes to vasculature detectable for up to at least 330 days and (v) chronic epilepsy is associated with inflammation, enhanced blood-brain barrier permeability and increased P-glycoprotein expression. The occurrence of seizures appears central to P-glycoprotein overexpression. Our findings have potential clinical impact because they directly improve our understanding of blood-brain barrier disruption and transporter expression in humans. In particular, our findings show that the expression of P-glycoprotein in humans is compatible with the inherent assumptions of one current hypothesis of multidrug resistance, and that the specific upregulation of P-glycoprotein expression is likely to be associated with ongoing chronic seizures. There may be a therapeutic window after initial acute injury for the prevention of P-glycoprotein overexpression, and thus this one potential component of drug resistance. Our findings add to the need for careful consideration of the benefit and risks of invasive electroencephalographic recording in surgical evaluation of drug-resistant epilepsy.


Assuntos
Barreira Hematoencefálica/patologia , Epilepsia/patologia , Hipocampo/patologia , Lobo Temporal/patologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Resistência a Medicamentos , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Lobo Temporal/metabolismo , Lobo Temporal/fisiopatologia
10.
PLoS One ; 7(4): e34813, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523559

RESUMO

16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of brain tissue, where available, will be an important part of this process in neurogenetic disease specifically.


Assuntos
Cromossomos Humanos Par 16 , Epilepsia do Lobo Temporal/genética , Proteínas Associadas aos Microtúbulos/genética , Deleção de Sequência , Adulto , Córtex Cerebral/patologia , Epilepsia/genética , Epilepsia do Lobo Temporal/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Mutação , Lobo Temporal/patologia
11.
Brain ; 134(Pt 10): 2969-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21903728

RESUMO

The long-term pathological effects of chronic epilepsy on normal brain ageing are unknown. Previous clinical and epidemiological studies show progressive cognitive decline in subsets of patients and an increased prevalence of Alzheimer's disease in epilepsy. In a post-mortem series of 138 patients with long-term, mainly drug-resistant epilepsy, we carried out Braak staging for Alzheimer's disease neurofibrillary pathology using tau protein immunohistochemistry. The stages were compared with clinicopathological factors, including seizure history and presence of old traumatic brain injury. Overall, 31% of cases were Braak Stage 0, 36% Stage I/II, 31% Stage III/IV and 2% Stage V/VI. The mean age at death was 56.5 years and correlated with Braak stage (P < 0.001). Analysis of Braak stages within age groups showed a significant increase in mid-Braak stages (III/IV), in middle age (40-65 years) compared with data from an ageing non-epilepsy series (P < 0.01). There was no clear relationship between seizure type (generalized or complex partial), seizure frequency, age of onset and duration of epilepsy with Braak stage although higher Braak stages were noted with focal more than with generalized epilepsy syndromes (P < 0.01). In 30% of patients, there was pathological evidence of traumatic brain injury that was significantly associated with higher Braak stages (P < 0.001). Cerebrovascular disease present in 40.3% and cortical malformations in 11.3% were not significantly associated with Braak stage. Astrocytic-tau protein correlated with the presence of both traumatic brain injury (P < 0.01) and high Braak stage (P < 0.001). Hippocampal sclerosis, identified in 40% (bilateral in 48%), was not associated with higher Braak stages, but asymmetrical patterns of tau protein accumulation within the sclerotic hippocampus were noted. In over half of patients with cognitive decline, the Braak stage was low indicating causes other than Alzheimer's disease pathology. In summary, there is evidence of accelerated brain ageing in severe chronic epilepsy although progression to high Braak stages was infrequent. Traumatic brain injury, but not seizures, was associated with tau protein accumulation in this series. It is likely that Alzheimer's disease pathology is not the sole explanation for cognitive decline associated with epilepsy.


Assuntos
Lesões Encefálicas/patologia , Epilepsia/patologia , Hipocampo/patologia , Emaranhados Neurofibrilares/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/metabolismo , Progressão da Doença , Epilepsia/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Esclerose , Proteínas tau/metabolismo
12.
Brain ; 134(Pt 10): 2982-3010, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21719429

RESUMO

Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20-66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy.


Assuntos
Encéfalo/patologia , Transtornos Cognitivos/patologia , Epilepsias Mioclônicas/patologia , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Adulto , Idoso , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Progressão da Doença , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1 , Síndrome
13.
J Neurosci Methods ; 190(1): 49-56, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20435066

RESUMO

Human brain tissue is a valuable source of material for research. It is often stored indefinitely in formalin at room temperature which may weaken the immunolabeling with formalin-sensitive antibodies. The present study found that a novel protocol that combined citrate and formic acid pre-treatments with the catalyzed signal amplification (CSA) system was able to recover the lost or weakened immunolabeling with the formalin-sensitive antibodies, anti-CD34, anti-caveolin, anti-P-glycoprotein, anti-neuronal nuclei, anti-parvalbumin, anti-human leukocyte antigen, anti-CD45, anti-CD68 and anti-connexin 43, in post-mortem, human brain tissue that was stored in formalin for up to 10 years at room temperature. Recovered immunolabeling in long-fixed tissue resembled immunolabeling observed in tissue that was fixed for a shorter duration between 6 and 49 days. The findings from this study highlight the importance of testing antibodies for formalin fixation effect prior to studies, especially if long-fixed tissue is used, to enable immunolabeling to be more accurately interpreted. Importantly, this study provides a method of overcoming formalin-masking of antigens in long-fixed human tissue, thus allowing essential immunohistochemical studies to be undertaken using precious human tissue.


Assuntos
Antígenos/metabolismo , Encéfalo/metabolismo , Imuno-Histoquímica/métodos , Fixação de Tecidos/métodos , Adulto , Idoso , Ácido Cítrico , Epilepsia/metabolismo , Feminino , Formaldeído , Formiatos , Humanos , Masculino , Pessoa de Meia-Idade , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...